Silane-modified surfaces in specific antibody-mediated cell recognition.

نویسندگان

  • Karolina Sterzynska
  • Joanna Budna
  • Emilia Frydrych-Tomczak
  • Grzegorz Hreczycho
  • Agnieszka Malinska
  • Hieronim Maciejewski
  • Maciej Zabel
چکیده

The immobilization of antibodies on various surfaces has been the subject of advanced research in various immunoassay-based diagnostic devices. The physical and chemical stabilities of the immobilized antibodies on a solid surface still cause many problems because upon immobilizing antibody molecules, the antigen-binding ability usually decreases. The silanization of surfaces with organosilanes carrying chemically active groups such as (3-aminopropyl) triethoxysilane (APTES) can accommodate these antigen-binding molecules in an appropriate orientation so that their functionality and binding activity are essentially retained. In this study, n-butyltrimethoxysilane (BMS) and 3-(octafluoropentyloxy)-propyltriethoxysilane (OFPOS) were used as "blocking silanes". The aims of this study were to compare the effectiveness of specific antibody binding of APTES, APTES + BMS and APTES + OFPOS and to characterize the modified surfaces by contact angle measurements and immunofluorescence measurements prior to and after immobilizing proteins. Additionally, we have evaluated the functionality of the immobilized antibodies by their abilities to bind EpCAM-positive human colon adenocarcinoma cell line (LoVo) and EpCAM-negative mouse embryonic fibroblast cell line (3T3). Cell enumeration was conducted on the basis of DAPI-positive signals and recorded using a confocal laser scanning biological microscope. The results of our study showed that the immobilization capability and reactivity of APTES, APTES + BMS and APTES + OFPOS differ. The modification of APTES with unreactive silanes (BMS,OFPOS) is recommended to improve the antibody binding efficiency. However, using OFPOS resulted in more effective antibody and cell binding, and it appears to be the most useful compound in specific antibody-mediated cell recognition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitroxide-Mediated Radical Polymerization of Styrene Initiated from the Surface of Titanium Oxide Nanoparticles

Titanium dioxide (TiO2) nanoparticles, with an average size of about 45 nm, were encapsulated by polystyrene using in situ nitroxide mediated radical polymerization   in the presence of 3-aminopropyl triethoxy silane (APTES) as a coupling agent and 2, 2, 6, 6-tetramethylpiperidinyl-1-oxy  as a initiator. First, the initiator for NMRP was covalently bonded onto the surface of Titanium dioxide na...

متن کامل

B cell Therapy to Treat an Axonal Neuropathy in Mixed Connective Tissue Disease

The B cell is a vital contributor to humoral immunity. The B cell-specific antigen CD20 is expressed during B cell development, starting at the pre-B cell level and persists through B cell differentiation, but is lost during terminal differentiation to plasma cells. Rituximab is a monoclonal antibody that destroys both normal and malignant B cells that have CD20 on their surfaces and is ther...

متن کامل

Formation of primary amines on silicon nitride surfaces: a direct, plasma-based pathway to functionalization.

Silicon nitride is the most commonly used passivation layer in biosensor applications where electronic components must be interfaced with ionic solutions. Unfortunately, the predominant method for functionalizing silicon nitride surfaces, silane chemistry, suffers from a lack of reproducibility. As an alternative, we have developed a silane-free pathway that allows for the direct functionalizat...

متن کامل

Designing Electroactive Biointerface for Spatiotemporal Control of Cell Attachment and Release

In this paper, we demonstrate the use of individually addressable microelectrodes for cell sorting and cell micropatterning applications. Microelectrodes were modified with cell adhesive or non-adhesive molecules and then electrically stimulated to selectively adsorb or desorb proteins and/or mammalian cells. The switching of the surface properties was achieved by the electrochemical desorption...

متن کامل

DNA probes on chip surfaces studied by scanning force microscopy using specific binding of colloidal gold.

Single-stranded DNA was covalently bound on chip surfaces using two different silanization procedures. The resulting surfaces were characterized by fluorescence and scanning force microscopy using sequence-complementary DNA molecules with labels. Colloidal gold (30 nm) was used as the topographic label. Scanning force microscopy revealed the individual labels on the surface and their distributi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Folia histochemica et cytobiologica

دوره 52 3  شماره 

صفحات  -

تاریخ انتشار 2014